Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A strong understanding of technical knowledge is necessary for all engineers, but understanding the context in which engineering work takes place is just as important. Engineering work impacts people, communities, and environments, and there is increasing recognition of the importance of preparing engineers to account for these sociocultural dimensions. The engineering curriculum needs to include both technical and sociocultural topics to prepare students as holistically competent engineers. A call for broader engineering skills is evident in ABET student outcomes, a few of which directly denote the importance of students’ ability to identify the ethical, cultural, and social impact engineers have on society. However, engineering education continues to underemphasize or omit entirely non-technical aspects of engineering practice. Technical knowledge persists as the central focus in engineering classes. Omitting sociocultural material in engineering classes can result in the development of future engineers whose designs further perpetuate social and systemic inequities, such as environmental pollution that affects vulnerable populations or inefficient designs that risk human lives. Additionally, emphasizing sociotechnical content in undergraduate engineering courses can help attract and retain a more diverse population of students who value socially relevant engineering work. A deep grounding in both technical and social skills and knowledge is particularly important in Industrial Engineering (IE), a field that focuses on analyzing data to improve systems and processes and which tends to focus more on human and business dimensions than many other engineering fields. Even so, there is little evidence to indicate that sociocultural skills and knowledge are taught in IE courses. Because the curricular focus of a field communicates to students what is and is not valued in the field, students who enter IE with a strong desire to advance social good may learn that such a goal is inconsistent with the field’s values and ultimately feel alienated or disinterested if social dimensions are not incorporated into their coursework. More insight is needed into the kinds of messages IE coursework sends about the nature of work in the field and the opportunities these courses provide for students to develop the sociotechnical knowledge and skills that are increasingly crucial in Industrial Engineering. In an effort to characterize how, if at all, core courses in IE facilitate students’ development of sociotechnical engineering skills, this research paper examines the general content of core IE courses at a predominantly white institution. This paper draws on data generated for a larger research study that leverages Holland et al.’s Figured Worlds framework to explore the messaging undergraduate engineering students receive in their classes around valued knowledge in their field. In this study, we draw on observation data leveraging recordings of seven required undergraduate courses in IE. We analyzed three randomly selected sessions from each course, with a total of 21 unique sessions observed. Our findings describe the practices that are and are not emphasized within and across required IE courses and the ways these practices are discussed. Our characterization of emphasized engineering practices provides an important foundation for understanding what is communicated to students about the nature of engineering work in their field, messaging which has substantial implications for the population of students who enter and persist in the field beyond their undergraduate studies.more » « less
-
As problems become more complex, global, and interdisciplinary, engineers need to develop novel solutions and utilize resources, information, and tools in strategic and creative ways. Divergent thinking describes a process where multiple options, pathways, alternatives, or ideas are developed. For engineering students, divergent thinking can facilitate flexibility and expand opportunities considered when solving problems. To develop divergent thinking skills in engineering, we must understand how it is (and is not) facilitated in current engineering education experiences. Current pedagogy and resources available in engineering education on divergent thinking are limited. Thus, our research focused on exploring educational experiences in which students felt they considered divergent thinking. In this paper, we describe the iterative development of an interview protocol to elicit student experiences related to opportunities for divergent thinking. From the initial round of piloting, we found student awareness of divergent thinking was limited. Our findings highlight the need to structure questions in ways that align with students’ existing understandings of their engineering experiences. Our team made modifications to the protocol to address this, including using accessible terms to describe divergent thinking, asking students to describe one example project they remembered well, and. focusing questions within one step of the project selected by the student as most relevant to their exploration of alternatives. This iterative development of the protocol was successful in eliciting divergent thinking experiences across their work.more » « less
An official website of the United States government

Full Text Available